[Jain, 1(5): July, 2012] ISSN: 2277-9655

| JESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
Optimization of Cache Memory Using Unrolled Linked List
Neha Jain*1, K amlesh L akhwani 2

"2 M. Tech, SurestGyan Vihar University, Jaipur, Rajasthan
kinshika@gmail.com

Abstract
Data structures play an important role to redueectbst of memory access. First array was introdud@dh gives
fast cacheaccess, as elements are stored in consecutivesplBeg it has disadvantage also, like, wastage
memory, don't allow insertion at ruimme, and most important takes large number otiglgifoperations to insert «
delete an item at any other position excluding pesition
After that Linked-List was introduckto overcome disadvantages of array. It has adgastof quick insertions ai
incremental growth. At rutime new data can be inserted and avoid wastageesfiory. But it also has son
disadvantages, like requirement of extra memorycepa store refences. For N elements N references
assigned, one for each element.
Special type of Linkedust is introduced which combines the cache advgegaf an array but the quick insertic
and incremental growth of a linked list. This isrolted Linkec-List. Actually data field stores an array in place «
single element.
As Unrolled Linked-list is a cacheensitive data structure, which increases the spé@demory access by usii
arrays. We'll implement its all basic operationradowith its applicatior. Basic operations are insertion, deleti
searching, traversing and sorting. Like array aimdkéc-
List it also has applications to implement manyeotilementary data structures like stack and gt
In future may be more caclsensitive and cac-obvious data structure can be defined and implemenitisd NF-

Hard and NFEomplete problems can be solved using these daitztgtes like unrolled linke-list.
Keyword: - Cache Memory, Linked List, Unrolled Linked List, Mery Acces

http: // www.ijesrt.com

I ntroduction

Today a memory access can be hundreds of 1
more costly than an arithmetic operation. Mact
designers have tried to reduce this cost by u
special hardware and softwat@ols, multiple level:
of cache, nomlocking caches, dynamic instructi
scheduling, etc. These techniques have only

partially successful for point-manipulating
programs. Memory caches are the ubiquit
hardware solution to this problem. A memcache
is a small and fast memory that store rece
accessed data items and attempt to intercept
satisfy data requests without accessing main mer
In the beginning, a single level of cache is seffig
but the increasing performance gap requireo
levels of caches today and three in the near futor
addition to caches, a variety of hardware

software techniques have been developed

implemented to reduce the cost of memory acc
Except these techniques, many program’s exec!
time is dminated by the latency of memc
references. Randoecess Memory Model (RAM
is generally used by programmers to understanc
design a data structure and algorithm.

From a software perspective, programming langu
also plays an important role. Earlgnguages like

FORTRAN and ALGOL, used mainly for scientit
applications, did not support pointers. Applicasi
written in these languages stores their data iaya
Subsequent languages such as Simula, Pascal,
C++ supported pointers. Many apptions written in
these languages, such as databases and ope
systems, make extensive use of pointer structu
store data.

In addition to all these techniques, data strustame
also important to speed up memory access. As
already know that Amys are linear data structure ¢
very efficient to perform insertion and deleti
operation at last position. One advantage is dlat
they are very easy to implement. To insert an ef|
at middle or starting requires O(N) time, which
very costly.

Then another type of data structures is Lit-List.
This data structure is specially pointers. A paiigea
variable refer to the other variable. Pointers #sed
to allocate memory at runtim&hey are frequently
used in applications in which the data requirem
are not known until the program executes or ve
widely during execution. In insertion at middle it
is no backward shifting just finding middle positi
we can insert the new nedSimilarly with deletion
there is no forward shifting. Linkvlists are

(C) International Journal of Engineering Sciences & Research Technology[287-289]

http: // www.ijesrt.com

[Jain, 1(5): July, 2012]

important to reduce the cost of memory access for
particular applications. We all know the
implementation of these data structures from a lEmp
Array to the circular linked-list in any programrmgin
language like C, C++, and java etc.

Objective

1. Implementation of elementary data structures.

2. Overcomes disadvantages of Linked-List, by
storing multiple elements in each node.

3. It combines cache advantages of an array with
quick insertion and incremental growth of

Linked-List.

Unrolled Linked-List

Modern PCs have multi-level cache hierarchies that
make traversing an array (visiting the elements in
order) very fast. Cache hits are so fast that chea
sensitive analysis they are considered "free"; nlg o
count cache misses. If a cache line has size B, the
the number of cache misses is about n/B. A linked
list, on the other hand, requires a cache miss for
every node access in the worst case. Even in thie be
case, when the nodes are allocated consecutively in
order, because linked list nodes are larger, it can
require several times more cache misses to traverse
the list. Traversing of an array is faster thamkdd-

list, having both 60 million integers. Don't ignore
linked-list just yet, though. We need somethinghwit
the cache advantages of an array but the quick
insertions and incremental growth of a linked list.
Here comes the role of “Unrolled Linked-List”. In
simple terms, an unrolled linked list is a linkést bf
small arrays, all the same size N. Each is small
enough that inserting or deleting from it is quiblat
large enough so that it fills a cache line. Anater
pointing into the list consists of both a pointera
node and an index into that node.

. <)
56789>

C10

ISSN: 2277-9655

M ethodology

Basic Operations

1. Insertion

2. Deletion

3. Traversing

4. Searching

Insertion

If there is space left in the array of the nodevirich

we wish to insert the value, we simply insert it,
requiring only O(N) time. If the array already
contains N values, we create a new node, insert
it after the current one, and move half the elesémt
that node, creating room for the new value. Again,
total time is O(N).

Insertion in Unrolled Linked-List

Deletion

5
b
2>l 3 | 4 |6 | 7|8 |9

4
e lals e LAl

SeIsl-sL LT

Deletion is similar; we simply remove the valuenfro
the array. If the number of elements in the array
drops below N/2, we take elements from a
neighboring array to fill it back up. If the neigiing
array also has N/2 values, then we merge it wigh th
neighboring array instead. Those familiar wBth
Treesmay note some similarities in these operations.
One small issue with unrolled linked lists is kegpi
track of the number of elements in each array. One
easy and space-efficient way to deal with this, whe
applicable, is to use some reserved "null" valuglito
unused array slots. By aligning the nodes, somsatime
the number of elements can be stored in the losv bit
of the pointers. Otherwise it adds a bit of ovethea
per node.

b 4
—| 3 4 6 7 8 9 |>
> 3 | 6 7 R 9 —

Deletion operation in Unrolled Linked-List

(C) International Journal of Engineering Sciences & Research Technology[287-289]

http: // www.ijesrt.com

[Jain, 1(5): July, 2012]

Work Plan

Implementation of Insertion operation in C:

| am familiar with C language, that's why in my
dissertation | am using C. Yet | have only writee©
code for insertion operation in Unrolled Linked4.is

In this insertion case | have assumed that, when a
node in which array is full, then a new node wil b
added after that node and new elements will be
inserted in that new node.

Conclusion

Data structures play an important role to reduee th
cost of memory access. First array was introduced
which gives fast cache-access, as elements aeglstor
in consecutive places. But it has disadvantage also
like, wastage of memory, don't allow insertion at
run-time, and most important takes large number of
shifting operations to insert or delete an iterarat
other position excluding last position.

After that Linked-List was introduced to overcome
disadvantages of array. It has advantages of quick
insertions and incremental growth. At run-time new
data can be inserted and avoid wastage of memory.
But it also has some disadvantages, like requirémen
of extra memory space to store references. For N
elements N references are assigned, one for each
element.

Special type of Linked-List is introduced which
combines the cache advantages of an array but the
quick insertions and incremental growth of a linked
list. This is Unrolled Linked-List. Actually dataefd
stores an array in place of a single element.

| have implemented its insertion operation. In this
each node contains an array of size N. To insert an
element there are two conditions, i) if in nodeagr
have space then that element will be insertedyeasil
i) if array is full then a new node will be credtand
inserted after the current node and element will be
inserted in that node.

One small issue with unrolled linked lists is kewpi
track of the number of elements in each array. One
easy and space-efficient way to deal with this, whe
applicable, is to use some reserved "null" valuglito
unused array slots. By aligning the nodes, someatime
the number of elements can be stored in the losv bit
of the pointers. Otherwise it adds a bit of ovethea
per node.

Future Scope

As Unrolled Linked-list is a cache-sensitive data
structure, which increases the speed of memory
access by using arrays. In future I'll implementatl
basic operation along with its applications. Basic
operations are insertion, deletion, searching,

ISSN: 2277-9655

traversing and sorting. Like array and Linked-
List it also has applications to implement manyeoth
elementary data structures like stack and queue.
Insertion operation can be modified, If there iacp
left in the array of the node in which we wish to
insert the value, we simply insert it, requiringlyon
O(N) time. If the array already contains N values,
create a new node, insert it after the current and,
move half the elements to that node, creating room
for the new value. Again, total time is O(N). Débet

is similar to insertion; we simply remove the value
from the array. If the number of elements in thear
drops below N/2, we take elements from a
neighboring array to fill it back up. If the neigiting
array also has N/2 values, then we merge it wi¢h th
neighboring array instead.

In future may be more cache-sensitive and cache-
obvious data structure can be defined and
implemented. Also NP-Hard and NP-Complete
problems can be solved using these data structures
like unrolled linked-list.

References

[1] M. Fomitchev. Unrolled linked lists and skip
lists.Master’s thesis, York University, October 300
[2] T. L. Harris. A pragmatic implementation of non
blocking linked-lists. In DISC 2001, pages 300-314.
[3] M. R. BROWN AND R. E. TARJAN, Design and
analysis of a data structure for representing rtedo
lists, SIAM J. Comput. 9 (2000), 594-614.

[4] Shimomura, T. & Isoda, S. 1991, "Linked-list
visualization for debugging”, IEEE Software

8(3), 44-51.
[5]http://en.literateprograms.org/Unrolled link
ed list (C Plus Plus)

[6] http://blogs.msdn.com/b/devdev/archive/200
5/08/22/454887.aspx

[7]http://locklessinc.com/articles/optimization/

(C) International Journal of Engineering Sciences & Research Technology[287-289]

