
 [Jain, 1(5): July, 2012]

http: // www.ijesrt.com (C) International Journal of Engineering

IJESRT
INTERNATIONAL JOURNA

Optimization of Cache Memory Using Unrolled Linked List
Neha Jain

*1,2
 M. Tech., Suresh

Data structures play an important role to reduce the cost of memory access. First array was introduced which gives
fast cache-access, as elements are stored in consecutive places. But it
memory, don’t allow insertion at run-time, and most important takes large number of shifting operations to insert or
delete an item at any other position excluding last position.
After that Linked-List was introduced to overcome disadvantages of array. It has advantages of quick insertions and
incremental growth. At run-time new data can be inserted and avoid wastage of memory. But it also has some
disadvantages, like requirement of extra memory space to store refere
assigned, one for each element.
Special type of Linked-List is introduced which combines the cache advantages of an array but the quick insertions
and incremental growth of a linked list. This is Unrolled Linked
single element.
As Unrolled Linked-list is a cache-sensitive data structure, which increases the speed of memory access by using
arrays. We’ll implement its all basic operation along with its applications
searching, traversing and sorting. Like array and Linked
List it also has applications to implement many other elementary data structures like stack and queue.
In future may be more cache-sensitive and cache
Hard and NP-Complete problems can be solved using these data structures like unrolled linked
Keyword: - Cache Memory, Linked List, Unrolled Linked List, Memory Access

Introduction
Today a memory access can be hundreds of times
more costly than an arithmetic operation. Machine
designers have tried to reduce this cost by using
special hardware and software tools, multiple levels
of cache, non-blocking caches, dynamic instruction
scheduling, etc. These techniques have only been
partially successful for pointer
programs. Memory caches are the ubiquitous
hardware solution to this problem. A memory
is a small and fast memory that store recently
accessed data items and attempt to intercept and
satisfy data requests without accessing main memory.
In the beginning, a single level of cache is sufficed,
but the increasing performance gap requires tw
levels of caches today and three in the near future. In
addition to caches, a variety of hardware and
software techniques have been developed and
implemented to reduce the cost of memory access.
Except these techniques, many program’s execution
time is dominated by the latency of memory
references. Random-Access Memory Model (RAM)
is generally used by programmers to understand and
design a data structure and algorithm.
From a software perspective, programming languages
also plays an important role. Early languages like

 ISSN: 2277

International Journal of Engineering Sciences & Research Technology

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Optimization of Cache Memory Using Unrolled Linked List
Neha Jain*1, Kamlesh Lakhwani 2

, Suresh Gyan Vihar University, Jaipur, Rajasthan
kinshika@gmail.com

Abstract
Data structures play an important role to reduce the cost of memory access. First array was introduced which gives

access, as elements are stored in consecutive places. But it has disadvantage also, like, wastage of
time, and most important takes large number of shifting operations to insert or

delete an item at any other position excluding last position.
d to overcome disadvantages of array. It has advantages of quick insertions and

time new data can be inserted and avoid wastage of memory. But it also has some
disadvantages, like requirement of extra memory space to store references. For N elements N references are

List is introduced which combines the cache advantages of an array but the quick insertions
and incremental growth of a linked list. This is Unrolled Linked-List. Actually data field stores an array in place of a

sensitive data structure, which increases the speed of memory access by using
arrays. We’ll implement its all basic operation along with its applications. Basic operations are insertion, deletion,
searching, traversing and sorting. Like array and Linked-
List it also has applications to implement many other elementary data structures like stack and queue.

sensitive and cache-obvious data structure can be defined and implemented. Also NP
Complete problems can be solved using these data structures like unrolled linked-list.

Cache Memory, Linked List, Unrolled Linked List, Memory Access

Today a memory access can be hundreds of times
more costly than an arithmetic operation. Machine
designers have tried to reduce this cost by using

tools, multiple levels
blocking caches, dynamic instruction

scheduling, etc. These techniques have only been
partially successful for pointer-manipulating
programs. Memory caches are the ubiquitous
hardware solution to this problem. A memory cache
is a small and fast memory that store recently
accessed data items and attempt to intercept and
satisfy data requests without accessing main memory.
In the beginning, a single level of cache is sufficed,
but the increasing performance gap requires two
levels of caches today and three in the near future. In
addition to caches, a variety of hardware and
software techniques have been developed and
implemented to reduce the cost of memory access.
Except these techniques, many program’s execution

ominated by the latency of memory
Access Memory Model (RAM)

is generally used by programmers to understand and

From a software perspective, programming languages
languages like

FORTRAN and ALGOL, used mainly for scientific
applications, did not support pointers. Applications
written in these languages stores their data in array.
Subsequent languages such as Simula, Pascal, C and
C++ supported pointers. Many applica
these languages, such as databases and operating
systems, make extensive use of pointer structure to
store data.
In addition to all these techniques, data structures are
also important to speed up memory access. As we
already know that Arrays are linear data structure and
very efficient to perform insertion and deletion
operation at last position. One advantage is also that
they are very easy to implement. To insert an element
at middle or starting requires O(N) time, which is
very costly.
Then another type of data structures is Linked
This data structure is specially pointers. A pointer is a
variable refer to the other variable. Pointers are used
to allocate memory at runtime.
used in applications in which the data requirements
are not known until the program executes or varies
widely during execution. In insertion at middle there
is no backward shifting just finding middle position
we can insert the new node. Similarly with deletion,
there is no forward shifting. Linked

ISSN: 2277-9655

Sciences & Research Technology[287-289]

ENCES & RESEARCH

Optimization of Cache Memory Using Unrolled Linked List

Data structures play an important role to reduce the cost of memory access. First array was introduced which gives
has disadvantage also, like, wastage of

time, and most important takes large number of shifting operations to insert or

d to overcome disadvantages of array. It has advantages of quick insertions and
time new data can be inserted and avoid wastage of memory. But it also has some

nces. For N elements N references are

List is introduced which combines the cache advantages of an array but the quick insertions
Actually data field stores an array in place of a

sensitive data structure, which increases the speed of memory access by using
. Basic operations are insertion, deletion,

List it also has applications to implement many other elementary data structures like stack and queue.
vious data structure can be defined and implemented. Also NP-

list.

FORTRAN and ALGOL, used mainly for scientific
applications, did not support pointers. Applications
written in these languages stores their data in array.
Subsequent languages such as Simula, Pascal, C and
C++ supported pointers. Many applications written in
these languages, such as databases and operating
systems, make extensive use of pointer structure to

In addition to all these techniques, data structures are
also important to speed up memory access. As we

ays are linear data structure and
very efficient to perform insertion and deletion
operation at last position. One advantage is also that
they are very easy to implement. To insert an element
at middle or starting requires O(N) time, which is

Then another type of data structures is Linked-List.
This data structure is specially pointers. A pointer is a
variable refer to the other variable. Pointers are used

 They are frequently
used in applications in which the data requirements
are not known until the program executes or varies
widely during execution. In insertion at middle there
is no backward shifting just finding middle position

e. Similarly with deletion,
there is no forward shifting. Linked-lists are

 [Jain, 1(5): July, 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[287-289]

important to reduce the cost of memory access for
particular applications. We all know the
implementation of these data structures from a simple
Array to the circular linked-list in any programming
language like C, C++, and java etc.

Objective
1. Implementation of elementary data structures.
2. Overcomes disadvantages of Linked-List, by
storing multiple elements in each node.
3. It combines cache advantages of an array with
quick insertion and incremental growth of
Linked-List.

Unrolled Linked-List
Modern PCs have multi-level cache hierarchies that
make traversing an array (visiting the elements in
order) very fast. Cache hits are so fast that in cache-
sensitive analysis they are considered "free"; we only
count cache misses. If a cache line has size B, then
the number of cache misses is about n/B. A linked
list, on the other hand, requires a cache miss for
every node access in the worst case. Even in the best
case, when the nodes are allocated consecutively in
order, because linked list nodes are larger, it can
require several times more cache misses to traverse
the list. Traversing of an array is faster than a linked-
list, having both 60 million integers. Don’t ignore
linked-list just yet, though. We need something with
the cache advantages of an array but the quick
insertions and incremental growth of a linked list.
Here comes the role of “Unrolled Linked-List”. In
simple terms, an unrolled linked list is a linked list of
small arrays, all the same size N. Each is small
enough that inserting or deleting from it is quick, but
large enough so that it fills a cache line. An iterator
pointing into the list consists of both a pointer to a
node and an index into that node.

Methodology
Basic Operations
1. Insertion
2. Deletion
3. Traversing
4. Searching
Insertion
If there is space left in the array of the node in which
we wish to insert the value, we simply insert it,
requiring only O(N) time. If the array already
contains N values, we create a new node, insert
it after the current one, and move half the elements to
that node, creating room for the new value. Again,
total time is O(N).

 Insertion in Unrolled Linked-List

Deletion

Deletion is similar; we simply remove the value from
the array. If the number of elements in the array
drops below N/2, we take elements from a
neighboring array to fill it back up. If the neighboring
array also has N/2 values, then we merge it with the
neighboring array instead. Those familiar with B-
Trees may note some similarities in these operations.
One small issue with unrolled linked lists is keeping
track of the number of elements in each array. One
easy and space-efficient way to deal with this, where
applicable, is to use some reserved "null" value to fill
unused array slots. By aligning the nodes, sometimes
the number of elements can be stored in the low bits
of the pointers. Otherwise it adds a bit of overhead
per node.

Deletion operation in Unrolled Linked-List

 [Jain, 1(5): July, 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[287-289]

Work Plan
Implementation of Insertion operation in C:
I am familiar with C language, that’s why in my
dissertation I am using C. Yet I have only written a C
code for insertion operation in Unrolled Linked-List.
In this insertion case I have assumed that, when a
node in which array is full, then a new node will be
added after that node and new elements will be
inserted in that new node.

Conclusion
Data structures play an important role to reduce the
cost of memory access. First array was introduced
which gives fast cache-access, as elements are stored
in consecutive places. But it has disadvantage also,
like, wastage of memory, don’t allow insertion at
run-time, and most important takes large number of
shifting operations to insert or delete an item at any
other position excluding last position.

After that Linked-List was introduced to overcome
disadvantages of array. It has advantages of quick
insertions and incremental growth. At run-time new
data can be inserted and avoid wastage of memory.
But it also has some disadvantages, like requirement
of extra memory space to store references. For N
elements N references are assigned, one for each
element.

Special type of Linked-List is introduced which
combines the cache advantages of an array but the
quick insertions and incremental growth of a linked
list. This is Unrolled Linked-List. Actually data field
stores an array in place of a single element.
I have implemented its insertion operation. In this
each node contains an array of size N. To insert an
element there are two conditions, i) if in node array
have space then that element will be inserted easily,
ii) if array is full then a new node will be created and
inserted after the current node and element will be
inserted in that node.
One small issue with unrolled linked lists is keeping
track of the number of elements in each array. One
easy and space-efficient way to deal with this, where
applicable, is to use some reserved "null" value to fill
unused array slots. By aligning the nodes, sometimes
the number of elements can be stored in the low bits
of the pointers. Otherwise it adds a bit of overhead
per node.

Future Scope
As Unrolled Linked-list is a cache-sensitive data
structure, which increases the speed of memory
access by using arrays. In future I’ll implement its all
basic operation along with its applications. Basic
operations are insertion, deletion, searching,

traversing and sorting. Like array and Linked-
List it also has applications to implement many other
elementary data structures like stack and queue.
Insertion operation can be modified, If there is space
left in the array of the node in which we wish to
insert the value, we simply insert it, requiring only
O(N) time. If the array already contains N values, we
create a new node, insert it after the current one, and
move half the elements to that node, creating room
for the new value. Again, total time is O(N). Deletion
is similar to insertion; we simply remove the value
from the array. If the number of elements in the array
drops below N/2, we take elements from a
neighboring array to fill it back up. If the neighboring
array also has N/2 values, then we merge it with the
neighboring array instead.

In future may be more cache-sensitive and cache-
obvious data structure can be defined and
implemented. Also NP-Hard and NP-Complete
problems can be solved using these data structures
like unrolled linked-list.

References
[1] M. Fomitchev. Unrolled linked lists and skip
lists.Master’s thesis, York University, October 2003.
[2] T. L. Harris. A pragmatic implementation of non-
blocking linked-lists. In DISC 2001, pages 300–314.
[3] M. R. BROWN AND R. E. TARJAN, Design and
analysis of a data structure for representing sorted
lists, SIAM J. Comput. 9 (2000), 594-614.
[4] Shimomura, T. & Isoda, S. 1991, "Linked-list
visualization for debugging", IEEE Software
8(3), 44-51.
[5]http://en.literateprograms.org/Unrolled_link

ed_list_(C_Plus_Plus)
[6] http://blogs.msdn.com/b/devdev/archive/200
5/08/22/454887.aspx
[7]http://locklessinc.com/articles/optimization/

